Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity
نویسندگان
چکیده
We previously demonstrated that cells isolated from the mesenchymal region of the human amniotic membrane (human amniotic mesenchymal tissue cells, hAMTC) possess immunoregulatory roles, such as inhibition of lymphocyte proliferation and cytokine production, and suppression of generation and maturation of monocyte-derived dendritic cells, as reported for MSC from other sources. The precise factors and mechanisms responsible for the immunoregulatory roles of hAMTC remain unknown. In this study, we aimed to identify the soluble factors released by hAMTC and responsible for the anti-proliferative effect on lymphocytes, and the mechanisms underlying their actions, in vitro. Conditioned medium (CM) was prepared under routine culture conditions from hAMTC (CM-hAMTC) and also from fragments of the whole human amniotic membrane (CM-hAM). We analyzed the thermostability, chemical nature, and the molecular weight of the factors likely responsible for the anti-proliferative effects. We also evaluated the participation of cytokines known to be involved in the immunomodulatory actions of MSC from other sources, and attempted to block different synthetic pathways. We demonstrate that the inhibitory factors are temperature-stable, have a small molecular weight, and are likely of a non-proteinaceous nature. Only inhibition of cyclooxygenase pathway partially reverted the anti-proliferative effect, suggesting prostaglandins as key effector molecules. Factors previously documented to take part in the inhibitory effects of MSCs from other sources (HGF, TGF-β, NO and IDO) were not involved. Furthermore, we prove for the first time that the anti-proliferative effect is intrinsic to the amniotic membrane and cells derived thereof, since it is manifested in the absence of stimulating culture conditions, as opposed to MSC derived from the bone marrow, which possess an anti-proliferative ability only when cultured in the presence of activating stimuli. Finally, we show that the amniotic membrane could be an interesting source of soluble factors, without referring to extensive cell preparation.
منابع مشابه
ارزیابی اثرات محیط کشت رویی پرده آمنیون بر فعالیتHeat Shock Protein 90 در سلولهای سرطانی سرویکس و پستان
Background and Objective: It has recently been shown that the application of amniotic membrane conditioned medium is effective in cancer treatment. In this study, the effect of amniotic stem cells conditioned medium on the activity of Hsp90 and Cdk4 expression, were investigated in cancer cells. Materials and Methods: Two cancer cell lines HeLa and MDA-MB-231 were treated with the supernatan...
متن کاملP163: The Anti-Inflammatory Effects of Human Amniotic Membrane Epithelial Cells-Derived Condition Media
The human amniotic membrane known as the innermost single epithelial-covered layer provides many applications such as applicable anti-inflammatory and anti-cancer effects. These immunomodulatory effects belongs to the epithelial cells, a type of epiblast-derived fetal stem cells which currently used for regenerative medicine and transplantation. These cells are collected by author-prepared faci...
متن کاملConditioned medium obtained from human amniotic membrane-derived mesenchymal stem cell attenuates heart failure injury in rats
Objective(s): Heart failure (HF) is one of the leading causes of death worldwide. Due to beneficial effects of stem cells, paracrine secretion of them has recently been used by researchers. The purpose of this study was to investigate the effects of intravenous injection (IV) of conditioned medium (CM) of human amniotic membrane-derived mesenchymal stem cell (MSC-CM) o...
متن کاملThe Effects of Dental Pulp Stem Cell Conditioned Media on the Proliferation of Peripheral Blood Mononuclear Cells
Background: Dental Pulp Stem Cells (DPSCs) are multipotent mesenchymal stem cells. DPSCs can renew themselves and differentiate into various cell types such as adipocytes, osteocytes, neurons, etc. DPSCs possess immunomodulatory properties and can inhibit peripheral blood mononuclear cell (PBMC) proliferation. Recent studies showed that conditioned-medium mesenchymal stem cells also had immunos...
متن کاملExpression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B
Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...
متن کامل